Lecture 14
 14.5 Directional derivatives and the gradient

Jeremiah Southwick

February 22, 2019

Things to note

Upcoming dates:
Wednesday, February 27: Quiz 7
Monday, March 4: Quiz 8 and WF drop date (see grade calculation sheet on Blackboard)
Wednesday, March 6: Review
Friday, March 8: Exam 2

Last class

Theorem
If $w=f(x, y)$ is differentiable and if $x=x(t), y=y(t)$ are differentiable functions of t, then the composite $w=f(x(t), y(t))$ is a differentiable function of t and

$$
\frac{d w}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Theorem
If $w=f(x, y)$ is differentiable and if $x=x(s, t), y=y(s, t)$ are differentiable functions of s and t, then the composite $w=f(x(s, t), y(s, t))$ is a differentiable function of s and t and

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t} \\
& \frac{\partial w}{\partial s}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}
\end{aligned}
$$

Chain rule example

Example

Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x+2 y+z^{2}, x=\frac{r}{s}$,
$y=r^{2}+\ln (s), z=2 r$

Chain rule example

Example
Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x+2 y+z^{2}, x=\frac{r}{s}$,
$y=r^{2}+\ln (s), z=2 r$
We have

$$
\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r}=(1)\left(\frac{1}{s}\right)+(2)(2 r)+(2 z)(2)=\frac{1}{s}+12 r
$$

Chain rule example

Example
Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x+2 y+z^{2}, x=\frac{r}{s}$,
$y=r^{2}+\ln (s), z=2 r$
We have
$\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r}=(1)\left(\frac{1}{s}\right)+(2)(2 r)+(2 z)(2)=\frac{1}{s}+12 r$
and

$$
\begin{gathered}
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \\
=(1)\left(-\frac{r}{s^{2}}\right)+(2)\left(\frac{1}{s}\right)+(2 z)(0)=\frac{-r+2 s}{s^{2}}
\end{gathered}
$$

14.5 Directional derivatives and the gradient

We want to take derivatives in directions that aren't the x - or y-directions.

14.5 Directional derivatives and the gradient

We want to take derivatives in directions that aren't the x - or y-directions.
Let's say we have a unit vector $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}\right\rangle$. The derivative in the u direction is defined as follows.

14.5 Directional derivatives and the gradient

We want to take derivatives in directions that aren't the x - or y-directions.
Let's say we have a unit vector $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}\right\rangle$. The derivative in the u direction is defined as follows.

Definition

The derivative of f at (a, b) in the direction of the unit vector $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}\right\rangle$ is the number

$$
\left(\frac{d f}{d t}\right)_{\overrightarrow{\mathbf{u}},(a, b)}=\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=\lim _{t \rightarrow 0} \frac{f\left(a+u_{1} t, b+u_{2} t\right)-f(a, b)}{t}
$$

14.5 Directional derivatives and the gradient

We want to take derivatives in directions that aren't the x - or y-directions.
Let's say we have a unit vector $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}\right\rangle$. The derivative in the u direction is defined as follows.

Definition

The derivative of f at (a, b) in the direction of the unit vector $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}\right\rangle$ is the number

$$
\left(\frac{d f}{d t}\right)_{\overrightarrow{\mathbf{u}},(a, b)}=\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=\lim _{t \rightarrow 0} \frac{f\left(a+u_{1} t, b+u_{2} t\right)-f(a, b)}{t}
$$

We won't use this definition for calculations, but observe that if we take $\overrightarrow{\mathbf{u}}=\langle 1,0\rangle$ and $\overrightarrow{\mathbf{u}}=\langle 0,1\rangle$, we get the formal definitions for the partial derivatives from 14.3.

Calculating the directional derivative

We can derive a formula for the directional derivative if we make use of the chain rule.

Calculating the directional derivative

We can derive a formula for the directional derivative if we make use of the chain rule. We have a function $f(x, y)$ where x and y are intermediate variables which depend on the independent variable t : $x(t)=a+u_{1} t$ and $y(t)=b+u_{2}(t)$. By the chain rule:

$$
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=\left(\frac{d f}{d t}\right)_{\overrightarrow{\mathbf{u}},(a, b)}
$$

Calculating the directional derivative

We can derive a formula for the directional derivative if we make use of the chain rule. We have a function $f(x, y)$ where x and y are intermediate variables which depend on the independent variable t : $x(t)=a+u_{1} t$ and $y(t)=b+u_{2}(t)$. By the chain rule:

$$
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=\left(\frac{d f}{d t}\right)_{\overrightarrow{\mathbf{u}},(a, b)}=\left[\frac{\partial f}{\partial x}(a, b)\right] \cdot \frac{d x}{d t}+\left[\frac{\partial f}{\partial y}(a, b)\right] \cdot \frac{d y}{d t}
$$

Calculating the directional derivative

We can derive a formula for the directional derivative if we make use of the chain rule. We have a function $f(x, y)$ where x and y are intermediate variables which depend on the independent variable t : $x(t)=a+u_{1} t$ and $y(t)=b+u_{2}(t)$. By the chain rule:

$$
\begin{aligned}
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)= & \left(\frac{d f}{d t}\right)_{\overrightarrow{\mathbf{u}},(a, b)}=\left[\frac{\partial f}{\partial x}(a, b)\right] \cdot \frac{d x}{d t}+\left[\frac{\partial f}{\partial y}(a, b)\right] \cdot \frac{d y}{d t} \\
& =\left[\frac{\partial f}{\partial x}(a, b)\right] \cdot u_{1}+\left[\frac{\partial f}{\partial y}(a, b)\right] \cdot u_{2}
\end{aligned}
$$

Calculating the directional derivative

We can derive a formula for the directional derivative if we make use of the chain rule. We have a function $f(x, y)$ where x and y are intermediate variables which depend on the independent variable t : $x(t)=a+u_{1} t$ and $y(t)=b+u_{2}(t)$. By the chain rule:

$$
\begin{aligned}
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)= & \left(\frac{d f}{d t}\right)_{\overrightarrow{\mathbf{u}},(a, b)}=\left[\frac{\partial f}{\partial x}(a, b)\right] \cdot \frac{d x}{d t}+\left[\frac{\partial f}{\partial y}(a, b)\right] \cdot \frac{d y}{d t} \\
& =\left[\frac{\partial f}{\partial x}(a, b)\right] \cdot u_{1}+\left[\frac{\partial f}{\partial y}(a, b)\right] \cdot u_{2} \\
& =\left\langle\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle
\end{aligned}
$$

We refer to the vector on the left as the gradient.

The gradient

Definition
The gradient of $f(x, y)$ is

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

The gradient

Definition
The gradient of $f(x, y)$ is

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

In the vein of Problem 1 on exam $1, \nabla f$ is

The gradient

Definition
The gradient of $f(x, y)$ is

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

In the vein of Problem 1 on exam $1, \nabla f$ is a vector-valued function. Because of this, $\nabla f(a, b)$ is

The gradient

Definition
The gradient of $f(x, y)$ is

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

In the vein of Problem 1 on exam $1, \nabla f$ is a vector-valued function. Because of this, $\nabla f(a, b)$ is a vector (with numbers in it).

Calculating the directional derivative

We have

$$
\begin{gathered}
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \\
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=\left\langle\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle
\end{gathered}
$$

Calculating the directional derivative

We have

$$
\begin{gathered}
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \\
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=\left\langle\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle
\end{gathered}
$$

Thus

$$
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}} .
$$

Calculating the directional derivative

We have

$$
\begin{gathered}
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \\
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=\left\langle\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle
\end{gathered}
$$

Thus

$$
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}} .
$$

The directional derivative is a dot product of two vectors, i.e., a number.

Example

$$
\left(D_{\mathbf{u}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}} .
$$

Example

Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at $(2,0)$ in the direction of $\overrightarrow{\mathbf{v}}=3 \overrightarrow{\mathbf{i}}-4 \overrightarrow{\mathbf{j}}$.

Example

$$
\left(D_{\mathbf{u}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}} .
$$

Example

Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at $(2,0)$ in the direction of $\overrightarrow{\mathbf{v}}=3 \overrightarrow{\mathbf{i}}-4 \overrightarrow{\mathbf{j}}$.
First we need to find $\overrightarrow{\mathbf{u}}$, a unit vector in the direction of $\overrightarrow{\mathbf{v}}$.

$$
\overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|}=\frac{\langle 3,-4\rangle}{\sqrt{3^{2}+4^{2}}}=\frac{\langle 3,-4\rangle}{5}=\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle .
$$

Example

$$
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}}
$$

Example

Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at $(2,0)$ in the direction of $\overrightarrow{\mathbf{v}}=3 \overrightarrow{\mathbf{i}}-4 \overrightarrow{\mathbf{j}}$.
First we need to find $\overrightarrow{\mathbf{u}}$, a unit vector in the direction of $\overrightarrow{\mathbf{v}}$.

$$
\overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|}=\frac{\langle 3,-4\rangle}{\sqrt{3^{2}+4^{2}}}=\frac{\langle 3,-4\rangle}{5}=\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle
$$

Next we find ∇f, the gradient.

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle=\left\langle e^{y}-y \sin (x y), x e^{y}-x \sin (x y)\right\rangle
$$

Example

$$
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=[\nabla f(a, b)] \cdot \overrightarrow{\mathbf{u}}
$$

Example

Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at $(2,0)$ in the direction of $\overrightarrow{\mathbf{v}}=3 \overrightarrow{\mathbf{i}}-4 \overrightarrow{\mathbf{j}}$.
First we need to find $\overrightarrow{\mathbf{u}}$, a unit vector in the direction of $\overrightarrow{\mathbf{v}}$.

$$
\overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|}=\frac{\langle 3,-4\rangle}{\sqrt{3^{2}+4^{2}}}=\frac{\langle 3,-4\rangle}{5}=\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle
$$

Next we find ∇f, the gradient.

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle=\left\langle e^{y}-y \sin (x y), x e^{y}-x \sin (x y)\right\rangle
$$

Last we evaluate the gradient at $(2,0)$ and dot it with $\overrightarrow{\mathbf{u}}$.

$$
\left(D_{\overrightarrow{\mathbf{u}}} f\right)(a, b)=\langle 1-0,2-0\rangle \cdot\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle=\frac{3}{5}-\frac{8}{5}=-1
$$

